NATURAL RESOURCES CONSERVATION SERVICE VIRGINIA CONSERVATION PRACTICE STANDARD

POND

(Number)

CODE 378

DEFINITION

A water impoundment made by constructing a dam or an embankment or by excavating a pit or dugout.

In this standard, ponds constructed by the first method are referred to as embankment ponds, and those constructed by the second method are referred to as excavated ponds. Ponds constructed by both the excavation and the embankment methods are classified as embankment ponds if the depth of water impounded against the embankment at the auxiliary spillway elevation is 3 feet or more.

PURPOSE

To provide water for livestock, fish and wildlife, recreation, fire control, and other related uses, and to maintain or improve water quality.

CONDITIONS WHERE PRACTICE APPLIES

This practice applies to the design and construction of low hazard ponds where:

- Failure of the dam will not result in loss of life; in damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.
- 2. The product of the storage times the effective height of the dam is less than 3,000. Storage is the volume, in acre-feet, in the reservoir

below the elevation of the crest of the auxiliary spillway. The effective height of the dam is the difference in elevation, in feet, between the auxiliary spillway crest and the lowest point in the cross section taken along the centerline of the dam. If there is no auxiliary spillway, the top of the dam is the upper limit.

The effective height of the dam is 35 feet or less.

All impoundments must meet the requirements of the Virginia Impounding Structures Regulations.

Site conditions shall be such that runoff from the design storm can be safely passed through (1) a natural or constructed auxiliary spillway, (2) a combination of a principal spillway and an auxiliary spillway, or (3) a principal spillway.

The drainage area above the pond must be protected against erosion to the extent that expected sedimentation will not shorten the planned effective life of the structure. The drainage area shall be large enough so that surface runoff and groundwater flow will maintain an adequate supply of water in the pond. The quality shall be suitable for the water's intended use.

The topography and geology of the site shall permit storage of water at a depth and volume that ensure a dependable supply, considering beneficial use, sedimentation, season of use, and evaporation and seepage losses. If surface runoff is the primary source of water for a pond, the soils shall be impervious enough to prevent excessive seepage losses or shall be of a type that sealing is practicable.

Conservation practice standards are reviewed periodically, and updated if needed. To obtain the current version of this standard, contact the Natural Resources Conservation Service.

CRITERIA

EMBANKMENT PONDS

Geological Investigations

Pits, trenches, borings, review of existing data or other suitable means of investigation shall be conducted to characterize materials within the embankment foundation, auxiliary spillway, and borrow areas. Soil materials shall be classified using the Unified Soil Classification System.

Foundation Cutoff

A cutoff of relatively impervious material shall be provided under the dam if necessary to reduce seepage through the foundation. The cutoff shall be located at or upstream from the centerline of the dam. It shall extend up the abutments as required and be deep enough to extend into a relatively impervious layer or provide for a stable dam when combined with seepage control. The cutoff trench shall have a bottom width adequate to accommodate the equipment used for excavation, backfill, and compaction operations. Side slopes shall not be steeper than one horizontal to one vertical.

Seepage Control

Seepage control is to be included if (1) pervious layers are not intercepted by the cutoff, (2) seepage could create swamping downstream, (3) such control is needed to ensure a stable embankment, or (4) special problems require drainage for a stable dam. Seepage may be controlled by (1) foundation, abutment, or embankment filters and drains; (2) reservoir blanketing; or (3) a combination of these measures.

Earth Embankment

The minimum top width for a dam is shown in Table 1. If the embankment top is to be used as a public road, the minimum width shall be 16 feet for one-way traffic and 26 feet for two-way traffic. Guardrails or other safety measures shall be used where necessary and shall meet the requirements of the responsible road authority. For dams less than 20 feet in height, maintenance considerations or construction equipment limitations may require

increased top widths from the minimum shown in Table 1.

Table 1. - Minimum top width for dams

Total height of embankment (feet)	Top Width (feet)
Less than 10 10-14.9	6 8
15-19.9	10
20-24.9	12
25-35	14

Side Slopes

The combined upstream and downstream side slopes of the settled embankments shall not be less than five horizontal to one vertical, and neither slope shall be steeper than two horizontal to one vertical. All slopes must be designed to be stable, even if flatter side slopes are required. Downstream or upstream berms can be used to help achieve stable embankment sections.

Slope Protection

If needed to protect the slopes of the dam from erosion, special measures, such as berms, rock riprap, sand-gravel, soil cement, or special vegetation, shall be provided. <u>Technical Release 56</u>, "A Guide for Design and Layout of Vegetative Wave Protection for Earth Dam Embankments" and <u>Technical Release 69</u>, "Riprap for Slope Protection Against Wave Action" contain design guidance.

Freeboard

The minimum elevation of the top of the settled embankment shall be 1 foot above the water surface in the reservoir with the auxiliary spillway flowing at design depth. The minimum difference in elevation between the crest of the auxiliary spillway and the settled top of the dam shall be 2 feet for all dams having more than a 20-acre drainage area or more than 20 feet in effective height.

Settlement

The design height of the dam shall be increased by the amount needed to ensure that after settlement the height of the dam equals or exceeds the design height. This increase shall not be less than 5 percent, except where detailed soil testing and laboratory analyses or experience in the area show that a lesser amount is adequate.

Principal Spillway

A pipe conduit, with needed appurtenances, shall be placed under or through the dam, except where rock, concrete, or other types of lined spillways are used, or where the rate and duration of flow can be safely handled by a vegetated or earth spillway.

The crest elevation shall be no less than 0.5 feet below the crest of the auxiliary spillway for dams having a drainage area of 20 acres or less, and no less than 1 foot for those having a drainage area of more than 20 acres.

When design discharge of the principal spillway is considered in calculating peak outflow through the auxiliary spillway, the crest elevation of the inlet shall be such that the design discharge will be generated in the conduit before there is discharge through the auxiliary spillway.

Pipe conduits designed for pressure flow must have adequate antivortex devices. The inlets and outlets shall be designed to function satisfactorily for the full range of flow and hydraulic head anticipated.

The capacity of the pipe conduit shall be adequate to discharge long-duration, continuous, or frequent flows without flow through the auxiliary spillway(s). The diameter of the pipe shall not be less than 4 inches. Pipe conduits used solely as a supply pipe through the dam for watering troughs and other appurtenances shall not be less than 1-1/4 inches in diameter.

If the pipe conduit diameter is 10 inches or greater, its design discharge may be considered when calculating the peak outflow rate through the auxiliary spillway.

Pipe conduits shall be ductile iron, welded steel, corrugated steel, corrugated aluminum, reinforced concrete (precast or sitecast), or plastic. Pipe conduits through dams of less than 20 feet total

height may also be cast iron or unreinforced concrete.

Pipe conduits shall be designed and installed to withstand all external and internal loads without yielding, buckling, or cracking. Rigid pipe shall be designed for a positive projecting condition. Flexible pipe shall be designed for a maximum deflection of 5 percent.

Connections of flexible pipe to rigid pipe or other structures shall be designed to accommodate differential movements and stress concentrations.

All pipe conduits shall be designed and installed to be water tight by means of couplings, gaskets, caulking, waterstops, or welding. Joints shall be designed to remain watertight under all internal and external loading including pipe elongation due to foundation settlement.

Pipe conduits shall have a concrete cradle or bedding if needed to provide improved support for the pipe to reduce or limit structural loading on pipe to allowable levels.

Cantilever outlet sections, if used, shall be designed to withstand the cantilever load. Pipe supports shall be provided when needed. Other suitable devices such as a Saint Anthony Falls stilling basin or an impact basin may be used to provide a safe outlet.

All steel pipe and couplings shall have protective coatings in areas that have traditionally experienced pipe corrosion, or in embankments with saturated soil resistivity less than 4000 ohmomor or soil pH less than 5. Protective coatings shall be asphalt, polymer over galvanizing, aluminized coating or coal tar enamel as appropriate for the pipe type. Plastic pipe that will be exposed to direct sunlight shall be ultravioletresistant and protected with a coating or shielding, or provisions provided for replacement as necessary.

Cathodic Protection

Cathodic protection is to be provided for coated welded steel and galvanized corrugated metal pipe where soil and resistivity studies indicate that the pipe needs a protective coating, and where the need and importance of the structure warrant additional protection and longevity. If cathodic protection is not provided for in the original design and installation, electrical continuity in the form of joint-bridging straps should be considered on

378-VA-4

pipes that have protective coatings. Cathodic protection should be added later if monitoring indicates the need.

Seepage Control

Seepage control along a pipe conduit spillway shall be provided if any of the following conditions exist:

- 1. The effective height of dam is greater than 15
- 2. The conduit is of smooth pipe larger than 8 inches in diameter.
- 3. The conduit is of corrugated pipe larger than 12 inches in diameter.

Table 2. - Acceptable PVC pipe for use in earth dams

Nominal pipe size	Schedule for standard Dimension ratio (SDR)	Maximum Depth of fill over pipe
In.		Feet
4 or smaller	Schedule 40	15
	Schedule 80	20
	SDR 26	10
6, 8, 10, 12	Schedule 40	10
	Schedule 80	15
	SDR 26	10

(Polyvinyl chloride pipe, PVC 1120 or PVC 1220, conforming to ATSM-D-1785 or ATSM-D-2241.)

Table 3. - Minimum gage for corrugated steel and aluminum pipe [2-2/3-in x 1/2-in corrugations] 1

Fill Height Above Pipe (Feet)	Steel pipe Minimum Gage	Minimum Thic	Aluminum pipe ² Minimum Thickness (inches) Equivalent Standard Gage ()			
	Pipe Diamete	r in Inches				
	21 and	21 and				
	less 24 30 36 42 48	less 24	30	36		
1-15	16 16 16 14 12 10	.06 (16) .060 (16)	.075 (14)	.075 (14)		
15-20	16 16 16 14 12 10	.06 (16) .075 (14)	.105 (12)	.105 (12)		
20-25	16 16 14 12 10 10	.06 (16) .105 (12)	.135 (10)	3		

¹ Pipe with 6, 8, and 10 inch diameters has 1-1/2 in x 1/4-in. corrugations. ² Riveted or helical fabrication.

NRCS, VA, December 2001

³ Not permitted.

Table 4. Minimum gage for corrugated steel pipe [3 inch x 1 inch corrugations)

Fill Height							
Above Pipe				9	Steel -	Minim	num
(Feet)						Ga	age
	Pipe Diameter In Inches						
	24 & less	24	30	36	42	48	
0-20	16	16	16	16	16	16	
20-25	16	16	16	16	16	14	

Table 5. Minimum gage for corrugated aluminum pipe (3 inch x 1 inch helical corrugations)

Fill Height				
Above Pipe	Aluminum - Minimum			
(Feet)	Equivalent Gage			
	Pipe Diameter In Inches			
	30 36 42 48			
0-20	16 16 16 16			
20-25	16 14 8 8			

Seepage along pipes extending through the embankment shall be controlled by use of a drainage diaphragm, unless it is determined that antiseep collars will adequately serve the purpose.

The drainage diaphragm shall function both as a filter for adjacent base soils and a drain for seepage that it intercepts. The drainage diaphragm shall consist of sand meeting the requirements of ASTM C-33, for fine aggregate. If unusual soil conditions exist such that this material may not meet the required filter or capacity requirements, a special design analysis shall be made.

Drainage Diaphragm

The drainage diaphragm shall be a minimum of 2 feet thick and extend vertically upward and horizontally at least three times the outside pipe diameter, and vertically downward at least 18 inches beneath the conduit invert. The drainage diaphragm shall be located immediately downstream of the cutoff trench, but downstream of the centerline of the dam if the cutoff is upstream of the centerline.

The drainage diaphragm shall be outletted at the embankment downstream toe using a drain backfill envelope continuously along the pipe to where it exits the embankment. Drain fill shall be protected from surface erosion.

Antiseep Collars

When antiseep collars are used in lieu of a drainage diaphragm, they shall have a watertight connection to the pipe. Maximum spacing shall be approximately 14 times the minimum projection of the collar measured perpendicular to the pipe but not more than 25 feet. The minimum spacing shall be 10 feet. Collar material shall be compatible with pipe materials. The antiseep collar(s) shall increase by 15% the seepage path along the pipe.

Trash Guard

To prevent clogging of the conduit, an appropriate trash guard shall be installed at the inlet or riser.

Other Outlets

A pipe with a suitable valve shall be provided to drain the pool area if needed for proper pond management or if required by State law. The principal spillway conduit may be used as a pond drain if it is located where it can perform this function.

Auxiliary Spillways

Auxiliary spillways convey large flood flows safely past earth embankments.

An auxiliary spillway must be provided for each dam, unless the principal spillway is large enough to pass the peak discharge from the routed design hydrograph and the trash that comes to it without overtopping the dam. The following are minimum criteria for acceptable use of a closed conduit principal spillway without an auxiliary spillway: a conduit with a cross-sectional area of 3 feet² or more, an inlet that will not clog, and an elbow designed to facilitate the passage of trash.

The minimum capacity of a natural or constructed auxiliary spillway shall be that required to pass the peak flow expected from a design storm of the frequency and duration shown in Table 6, less any reduction creditable to conduit discharge and detention storage.

The auxiliary spillway shall safely pass the peak flow, or the storm runoff shall be routed through the reservoir. The routing shall start either with the water surface at the elevation of the crest of the principal spillway or at the water surface after 10 days' drawdown, whichever is higher. The 10-day drawdown shall be computed from the crest of the auxiliary spillway or from the elevation that would be attained if the entire design storm were impounded, whichever is lower. Auxiliary spillways shall provide for passing the design flow at a safe velocity to a point downstream where the dam will not be endangered.

Constructed auxiliary spillways are open channels that usually consist of an inlet channel, a control section, and an exit channel. They shall be trapezoidal and shall be located in undisturbed or compacted earth. The side slopes shall be stable for the material in which the spillway is to be constructed. For dams having an effective height exceeding 20 feet, the auxiliary spillway shall have a bottom width of not less than 10 feet.

Upstream from the control section, the inlet channel shall be level for the distance needed to protect and maintain the crest elevation of the spillway. The inlet channel may be curved to fit existing topography. The grade of the exit channel of a constructed auxiliary spillway shall fall within the range established by discharge requirements and permissible velocities.

Structural Auxiliary Spillways

If chutes or drops are used for principal spillways or auxiliary spillways, they shall be designed according to the principles set forth in Part 650, Engineering Field Handbook, and the National Engineering Handbook, Section 5, Hydraulics; Section 11, Drop Spillways; and Section 14, Chute Spillways. The minimum capacity of a structural spillway shall be that required to pass the peak flow expected from a design storm of the frequency and duration shown in Table 6, less any reduction creditable to conduit discharge and detention storage.

EXCAVATED PONDS

Runoff

Provisions shall be made for a pipe and auxiliary spillway, if necessary, that will meet the capacity requirements of Table 6. Runoff flow patterns shall be considered when locating the pit and placing the spoil.

Side Slopes

Side slopes of excavated ponds shall be stable and shall not be steeper than one horizontal to one vertical. If livestock will water directly from the pond, a watering ramp of ample width shall be provided. The ramp shall extend to the anticipated low water elevation at a slope no steeper than three horizontal to one vertical.

Inlet Protection

If surface water enter the pond in a natural or excavated channel, the side slope of the pond shall be protected against erosion.

Excavated Material

The material excavated from the pond shall be placed so that its weight will not endanger the stability of the pond side slopes and so that it will not be washed back into the pond by rainfall. It shall be disposed of in one of the following ways:

- 1. Uniformly spread to a height that does not exceed 3 feet, with the top graded to a continuous slope away from the pond.
- 2. Uniformly placed or shaped reasonably well, with side slopes assuming a natural angle of repose. The excavated material will be placed at a distance equal to the depth of the pond but not less than 12 feet from the edge of the pond.
- 3. Shaped to a designed form that blends visually with the landscape.
- 4. Used for low embankment construction and leveling of surrounding landscape.
- 5. Hauled away.

Table 6 - Minimum Auxiliary Spillway Capacity

			Minimum Design Storm ¹		
Drainage Area	Effective height of Dam ²	Storage	Frequency	Minimum Duration	
Acre	Feet	Acre-Ft.	Year	Hour	
20 or less	20 or less	Less than 50	10	24	
Any	35 or less	Less than 50	25	24	
Any	35 or less	50 or more	50	24	

¹ Selected rain distribution based on climatological region.

ENVIRONMENTAL CONCERNS

Impacts on existing wetlands, streams, and other resources shall be assessed. USDA wetland provisions and technical assistance policy apply. Consultation with the Corps of Engineers and Virginia Department of Environmental Quality to determine Clean Water Act permit applicability shall also be made.

Planning and implementation of this practice will be preceded by an environmental evaluation using the "Environmental Evaluation Data Sheet", Form VA-EE-1 and related guidelines found in <u>GM-190</u>, <u>Part 410</u> (Virginia Amendments).

CONSIDERATIONS

Ponds will affect the water budget, especially effects on volumes and rates of runoff, infiltration, evaporation, transpiration, deep percolation and ground water recharge. Generally, the peak discharge will be reduced and, in many instances, reduced to zero during dry periods that could affect other water uses or users. There may be an increase in recharge to the ground water since most ponds seep and the base flow may extend for a longer period of time. Effects on the volume of downstream flow may prohibit desirable environmental, social or economic effects.

Ponds have the potential for multiple uses. Storage requirements for each purpose should be considered to ensure an adequate water supply for all intended uses, and the multiple uses should be compatible. Properly designed ponds will trap nutrients, sediments and pesticides. Therefore, chemical concentrations will normally be higher in the pond

area and lower in the downstream channel section.

Short-term and construction-related effects of this practice may affect the quality of the downstream watercourse.

Surface water temperature of the pond will increase and may affect the water temperature downstream if the water depth in the pond is greater than 8 feet. This may cause undesired effects on the aquatic and wildlife communities in the stream. A low level release may be installed to help offset this impact.

Ponds constructed in wetland areas must be evaluated to ensure the net wetland benefits are maintained or increased.

Ponds constructed in upland areas may have an affect on wildlife habitat. These impacts should be evaluated and methods considered to offset those that are negative.

Where water must be conveyed for use elsewhere, such as for irrigation or fire protection, ponds should be located as close to the point of use as feasible.

Ponds used for public recreation should have minimum facilities such as access roads, parking areas, boat ramps or docks, and sanitary facilities. Where areas are used for swimming, safety signs should be installed indicating the depth of water and flatter side slopes should be installed for

² As defined under "Conditions Where Practice Applies".

safety. The water should be tested for quality on a regular basis.

During the construction, there is the potential for earth moving to uncover or redistribute toxic materials.

Due consideration should be given to economics and safety and health factors.

The visual design of ponds shall be carefully considered in areas of high public visibility and those associated with recreation. The underlying criterion for all visual design is appropriateness. The shape and form of ponds, excavated material, and plantings are to relate visually to their surroundings and to their function.

The embankment may be shaped to blend with the natural topography. The edge of the pond may be shaped so that it is generally curvilinear rather than rectangular. Excavated material can be shaped so that the final form is smooth, flowing, and fitting to the adjacent landscape rather than angular geometric mounds. If feasible, islands may be added for visual interest and to attract wildlife.

CULTURAL RESOURCES

Consider existence of cultural resources in the project area and any project impacts on such resources. Consider conservation and stabilization of archeological, historic, structural, and traditional cultural properties when appropriate.

PLANS AND SPECIFICATIONS

Plans and specifications for installing ponds shall be in keeping with this standard and shall describe the requirements for applying the practice to achieve its intended purpose.

Plans and specifications shall be prepared to show site specifics. The drawings and specifications shall show location, cross sections of excavations and embankments, applicable piping and spillway details and applicable seeding requirements.

OPERATION AND MAINTENANCE

A site specific Operation and Maintenance Plan must be prepared and reviewed with the

landowner or operator. All ponds must be adequately maintained if their purposes are to be realized through the expected life. Special considerations shall be given for maintenance needs during the planning, design and construction of the pond.

The pond should be inspected periodically and especially after heavy rains to determine whether it is functioning properly or if repairs are needed.

Appurtenances such as trash racks, outlet structures and gates shall be kept free of trash and replaced when needed.

Erosion on the slopes of the dam and in the earth auxiliary spillway shall be filled with suitable material, compacted, seeded and fertilized as needed. Should the upstream face of the dam erode due to wave action, protection such as riprap may be needed. If seepage through or under the dam occurs, proper corrective measures shall be taken immediately.

The vegetative cover of the dam and earth spillway shall be maintained by mowing and fertilizing when needed. Trees can cause leaks and safety hazards and should not be permitted on the embankment or in the auxiliary spillway. When needed, fencing and water troughs will be provided to protect the pond and vegetation from livestock.

REFERENCES

- 1. NRCS, <u>Engineering Field Handbook</u>, Chapters 2, 5 and 11.
- 2. NRCS, <u>National Engineering Handbook</u>, Sections 4, 5 and 20.
- 3. NRCS, Technical Releases 56, 59, 60 and 69.
- 4. NRCS, <u>General Manual 190, Part 410</u> (Virginia Amendments).

NATURAL RESOURCES CONSERVATION SERVICE VIRGINIA CONSERVATION PRACTICE STANDARD

POND

Approved Practice Narratives

(Number)

Code 378

- 378 D1 Pond: A pond shall be installed to provide an adequate supply of water for use in irrigating crops.
- 378 D2 Pond: A pond shall be installed to provide an adequate supply of water for livestock use.
- 378 D3 Pond: A pond shall be installed to provide an adequate supply of water for recreation.
- 378 D4 Pond: A pond shall be installed to provide water for fish and wildlife habitat.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD.)

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC, 20250-9410 or call (202) 720-5964 (voice and TDD.) USDA is an equal opportunity provider and employer.